Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ferroelectric oxide-based heterostructures can be utilized to design interfacial phenomena mediated by charge, lattice, and polar symmetry, as well as developing novel energy-efficient electronics and nanophotonics with programmable functionalities.more » « lessFree, publicly-accessible full text available March 25, 2026
- 
            Abstract We report on the temperature dependent low energy electron diffraction (LEED) studies of 12 nm epitaxial Sr3Ir2O7(001) thin films. The Debye temperature has been extracted from the temperature-dependence of LEED intensity at elevated temperatures and different electron kinetic energies. For the most surface sensitive LEED, obtained at the lowest electron kinetic energies, the extracted surface Debye temperature is 270 ± 22 K, which is much lower than the 488 ± 40 K Debye temperature obtained using higher electron kinetic energies. Surprisingly, the LEED diffraction intensity, at the lowest electron kinetic energies, increases rather than decreases, with increasing sample temperatures up to about 440 K. This anomalous behavior has been attributed to the reduction of the lattice vibrational amplitudes along the surface normal. This damping of the normal mode vibrations with increasing temperature results from the enhanced electronic screening via thermally activated carriers. This scenario is corroborated by the transport measurement, showing that Sr3Ir2O7is a narrow band Mott insulator with a band gap of about 32 meV. We have identified criteria for finding anomalous scattering behavior in other transition metal oxide systems.more » « lessFree, publicly-accessible full text available March 14, 2026
- 
            Free, publicly-accessible full text available November 26, 2025
- 
            We report the nonvolatile modulation of microwave conductivity in ferroelectric PbZr0.2Ti0.8O3-gated ultrathin LaNiO3/La0.67Sr0.33MnO3 correlated oxide channel visualized by microwave impedance microscopy. Polarization switching is obtained by applying a tip bias above the coercive voltage of the ferroelectric layer. The microwave conductivity of the correlated channel underneath the up- and down-polarized domains has been quantified by finite-element analysis of the tip-sample admittance. At room temperature, a resistance on/off ratio above 100 between the two polarization states is sustained at frequencies up to 1 GHz, which starts to drop at higher frequencies. The frequence-dependence suggests that the conductance modulation originates from ferroelectric field-effect control of carrier density. The modulation is nonvolatile, remaining stable after 6 months of domain writing. Our work is significant for potential applications of oxide-based ferroelectric field-effect transistors in high-frequency nanoelectronics and spintronics.more » « less
- 
            Abstract We report evidence of a finite density of states at the Fermi level at the surface of epitaxial thin films of the narrow bandgap Mott insulator Sr3Ir2O7(001). The Brillouin zone critical points for Sr3Ir2O7(001) thin films have been determined by a comparison of the band mapping from angle-resolved photoemission spectroscopy and low energy electron diffraction. Angle-resolved x-ray photoemission studies reveal the surface termination of Sr3Ir2O7(001) is Sr–O. The absence of dispersion with photon energy, or changing wave vector along the surface normal, indicates the two-dimensional character of the bands contributing to the density of states close to the Fermi level for Sr3Ir2O7(001) thin films. Thus, the finite density of states at the Fermi level is attributed to surface states or surface resonances. The appearance of a finite density of states at the Fermi level is consistent with the increased conductivity with decreasing film thickness for ultrathin Sr3Ir2O7(001) films.more » « less
- 
            Ferroelectric tunnel junctions (FTJs) based on epitaxial complex oxide heterostructures are promising building blocks for developing low power nanoelectronics and neuromorphic computing. FTJs consisting of correlated oxide electrodes have distinct advantages in size scaling but only yield moderate electroresistance (ER) at room temperature due to the challenge in imposing asymmetric interfacial screening and large modulation of the tunneling potential profile. Here, we achieve large ER in all-oxide FTJs by paring a correlated metal with a narrow bandgap Mott insulator as electrodes. We fabricate epitaxial FTJs composed of 2.8 and 4 nm PbZr0.2Ti0.8O3 tunnel barriers sandwiched between correlated oxides LaNiO3 and Sr3Ir2O7 electrodes. An ER of 6500% has been observed at room temperature, which increases to over 105% at 100 K. The high ER can be attributed to ferroelectric polarization induced metal–insulator transition in interfacial Sr3Ir2O7, which enhances the potential asymmetry for the tunnel barrier. The temperature dependence of tunneling current shows that direct tunneling dominates in the on state, while the off-state conduction transitions from thermally activated behavior at high temperatures to Glazman–Matveev defect-mediated inelastic tunneling at low temperatures. Our study provides a viable material strategy for designing all-oxide FTJs with high ER, facilitating their implementation in nonvolatile memories and energy-efficient computing devices.more » « less
- 
            Free, publicly-accessible full text available November 13, 2025
- 
            Abstract Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials.more » « less
- 
            Abstract The Ruddlesden‐Popper 5diridate Sr2IrO4is an antiferromagnetic Mott insulator with the electronic, magnetic, and structural properties highly intertwined. Voltage control of its magnetic state is of intense fundmenatal and technological interest but remains to be demonstrated. Here, the tuning of magnetotransport properties in 5.2 nm Sr2IrO4via interfacial ferroelectric PbZr0.2Ti0.8O3is reported. The conductance of the epitaxial PbZr0.2Ti0.8O3/Sr2IrO4heterostructure exhibits ln(T) behavior that is characteristic of 2D correlated metal, in sharp contrast to the thermally activated behavior followed by 3D variable range hopping observed in single‐layer Sr2IrO4films. Switching PbZr0.2Ti0.8O3polarization induces nonvolatile, reversible resistance modulation in Sr2IrO4. At low temperatures, the in‐plane magnetoresisance in the heterostructure transitions from positive to negative at high magnetic fields, opposite to the field dependence in single‐layer Sr2IrO4. In the polarization down state, the out‐of‐plane anisotropic magnetoresistanceRAMRexhibits sinusoidal angular dependence, with a 90° phase shift below 20 K. For the polarization up state, unusual multi‐level resistance pinning appears inRAMRbelow 30 K, pointing to enhanced magnetocrystalline anisotropy. The work sheds new light on the intriguing interplay of interface lattice coupling, charge doping, magnetoelastic effect, and possible incipient ferromagnetism in Sr2IrO4, facilitating the functional design of its electronic and material properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
